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Abstract

Two contiguous pairs of enantiomeric 20-deoxy-l-ribonucleotides have been incorporated in a 5-methyl-CG
alternating decadeoxyribonucleotide duplex. Data from circular dichroism and UV melting experiments indicate
that the two base-pair long enantio-domain within the duplex was able to stabilize aZ-DNA-like conformation.
© 2000 Elsevier Science Ltd. All rights reserved.

Keywords:nucleic acids; conformation; enantiomeric nucleotides; circular dichroism.

The conformational heterogeneity of DNA has been well established. Local DNA conformations
are thought to play a biological role in gene expression by altering DNA–protein interactions.1,2 Left-
handedZ-DNA represent a major conformational change which can exist in vivo although its precise
role remains to be identified.3 Properties ofZ-DNA have been obtained through the use of poly[d(GC)]
or DNA plasmids containing various alternating (CG)n inserts. Oligonucleotides can also adopt the
Z conformation provided conditions are applied which can stabilize this left-handed conformation,
i.e. use of high alcohol or salt concentrations4–6 and introduction of chemical modifications such as
C-5 methylation or C-5 bromination of cytosine.7 More recently, C-8 methylation of guanine was
shown to markedly stabilize theZ conformation of short oligodeoxynucleotides under physiological salt
concentrations.8,9

A non-Z left-handed conformation, mirror-image of right-handedB-DNA, was evidenced by circular
dichroism in enantio-DNA10,11 which is constituted of enantiomeric 20-deoxy-L-nucleotides. Additio-
nally, it was concluded that DNA and enantio-DNA have, as expected, the same type and strength
of hydrogen-binding and base–base stacking interactions. Although the mirror-image ofB-DNA is
markedly different from that ofZ-DNA, we addressed the question as to whether the introduction into
a short DNA duplex amenable to aZ conformation of a few unnatural 20-deoxy-L-nucleotides, prone to
induce a left-handed conformation, might contribute to stabilize theZ conformation.
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For that purpose, self-complementary decadeoxynucleotide d(MeCG MeCGCG MeCG MeCG) (I, MeC
stands for 5-methyl cytosine), having two enantiomeric deoxy-L-nucleotides (C andG) inserted in the
middle of the sequence, was synthesized on a DNA synthesizer using the phosphoramidite method.10,12

The location of the twoL-nucleotides was chosen in a way that allows the formation of two contiguous
C�G pairs upon self-hybridization of I, giving rise to a short enantio-DNA domain in the middle of the
duplex.

Circular dichroism was used to monitor the conformational state at various sodium chloride concen-
trations and the results were compared with those obtained from corresponding stereoregular d(MeCG
MeCG MeCG MeCG MeCG) (II). The CD spectra for the NaCl titration of I and II at 13°C are shown
in Fig. 1A and 1B, respectively. The low salt ( 0.1 M NaCl) spectrum of stereoregular II indicates
the B conformation13 with a trough at 255 nm and a peak at 284 nm and the high salt (3.5 or 4 M
NaCl) spectrum indicates theZ conformation with a trough at 295 nm and a peak at 260 nm. Similar
results were observed forL-nucleotide containing I although a deeper trough was observed at high salt
concentrations. This is consistent with the existence for I of theB conformation at low salt concentrations
and theZ conformation at high salt concentrations. Upon a gradual increase of the NaCl concentration,
both I and II underwent aB-to-Z conformation transition. The NaCl concentration at the midpoint of the
B-to-Z transition was determined by monitoring the formation of the 295 nm trough (Fig. 2A). Plots of
�" at 295 nm as a function of the NaCl concentration afford a sigmoidal curve for both I and II. The
transition midpoint was 1.04 M NaCl for stereoregular II in agreement with previous results14 obtained
with d(MeCG)4, whereas, it was as low as 0.65 M for I. Moreover, the sharper transition observed in the
latter case reflects a higher cooperativity during theB-to-Z transition.

Fig. 1. The CD spectra for the NaCl titration of II (A) and I (B) in 0.01 M Tris–HCl (pH 7) at 13°C showing theB-to-Z
transition. NaCl concentration was: 0.1 M (a); 0.5 M (b); 0.75 M (c); 1 M (d); 1.25 (e); 1.5 M (f); 2 M (g); 3 M (h); or 4 M (i).
Oligonucleotide concentration was 14�M

The effect of temperature on the conformation of I and II were studied by CD and UV spectroscopy.
UV thermal denaturation studies of I were carried out at 260 nm. Each curve exhibited a single co-
operative transition and corresponding melting temperature (Tm) values were obtained from the inflection
point. At 2 M NaCl concentration, I has a linear 1/Tm versus ln[I] dependence over the 5–50�M
range of oligonucleotide concentrations (Fig. 2B). This rules out the formation of any hairpin duplex
in equilibrium with a double-stranded duplex in theZ conformation.15 The effects of temperature on the
conformations of I and II have also been studied by circular dichroism. In 0.1 M NaCl, as the temperature
increases (18, 44 and 54°C), the main changes are a decrease of the band amplitudes resulting from
progressive melting of theB-form duplexes into single strands (data not shown). In 3 M NaCl and at
44°C, whereas the CD curve of II still exhibits a well at 295 nm, a large complex positive band centered
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Fig. 2. (A) Salt concentration dependence of theB-to-Z transition for I (�) and II (�) at 13°C;�" values at 295 nm were plotted
for each salt concentration. (B) Plot of the reciprocalTm as a function of the logarithm of oligonucleotide I concentration in 2
M NaCl, 0.01 M cacodylate (pH 7)

at 270 nm is present, reflecting dramatic conformational changes (Fig. 3A). At 54°C, the spectrum is
similar to that observed at the same temperature and in 0.1 M NaCl. In contrast, the trough at 295 nm
remains present for compound I at 54°C, revealing the persistence of theZ conformation in the duplex
(Fig. 3B) in accordance with the highTm value (Tm 76°C) observed in high salt conditions.

Fig. 3. CD spectra at: 18°C (a); 44°C (b); and 54°C (c) of I in the presence of 0.1 M NaCl (A) or 3 M NaCl (B)

In conclusion, we have found that substitution, within a short DNA duplex amenable to aZ con-
formation, of two contiguous nucleotide pairs for two pairs of enantiomericL-nucleotides stabilize the
left-handedZ conformation. This could be assigned to the ability ofL-nucleotide pairs to induce, at low
salt concentrations, a local left-handed conformation different from that existing inZ-DNA but which
may contribute to lower the energy required for aB-to-Z transition in the DNA duplex. NMR studies
which could confirm these findings and clarify the origin of the observed stabilizing effect are currently
under way.
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